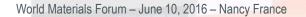
Digital Enterprise Impact on Material Reduction

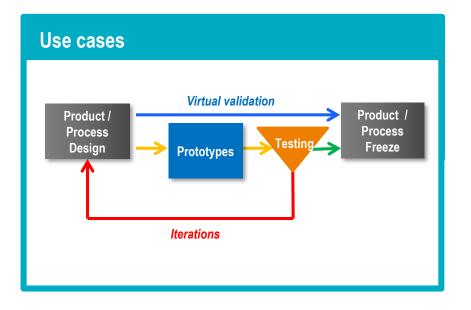
Patrick Koller Faurecia

Impact of digital levers on material consumption

		Digital levers	Actions
1	DEVELOPMENT	Digital validation in programs	 Fewer prototypes: virtual validation instead of physical tests
2	START OF PRODUCTION	Standardization & process simulation	 Optimization of process tuning and "plant learning curve" producing less scrap and lower launch costs
3	SCRAP AVOIDANCE	Predictive maintenance Reduction of variability	 Prevention of equipment breakdown creating scrap Better process control: prevention of process drifts Adjustment of process parameters to ensure 1st part is right
4	PROCESS CONTROL	Reduction of variability Process control	 Avoidance of frequent destructive tests thanks to process stability / capability Optimization of process parameters by mastering lower part of the tolerance
5	ECR / EOP	Data consistency in R&D and plants	 Better management of engineering changes leading to reduction of obsolete components at the introduction of the new product definition


Impact of digital levers on inventory

	Digital levers	Actions
INCOMING GOODS	Real time tracking of production Logistics network optimization	 Reduction of safety buffer, including incoming goods (end to end visibility for the supplier) Optimized in-transit material
2 WIP AND ASSET MANAGEMENT	Predictive maintenance Extended enterprise with open ecosystem Manufacturing Intelligence & digital management control	 Eliminate need for spare parts inventory: breakdown prediction will allow just needed intervention Vendors get real time access to consumables inventory for just in time replenishment Higher efficiency of capacity equipment leading to fewer machines
3 FINISHED GOODS	Production control & equipment flexibility 3D printing	 Reduction of changeover duration allowing smaller batches Reduction of inventory for EOP Spare parts, print on demand



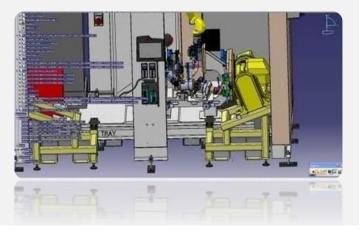
Digital validation in programs

		600 programs in development per year	Activisto D.
	Current Situation	40,000 prototypes per year	
	Situation	About 2 million kg/year of prototypes	

Impact on material consumption

20% of prototypes saved in development phases

- 400,000 kg/year of prototypes saved
- € 40 million savings



Standardization and process simulation

200 programs in launch phase/year

■ € 50 millions in start-up cost/year (material part)

1 million kg /year of non-sellable parts

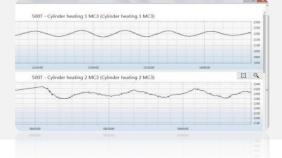
Use cases

Current

Situation

- Standardization ensures robustness of development / capable processes
- Process simulation defines detailed parameters (e.g. welding trajectories), avoiding process tuning at launch
- Simulation provides work instructions which shorten the learning curve

Impact on material consumption


- 25% "non-sellables" saved in launch phase
 - 250,000 kg/year saved
- 20 % savings in launch costs
 € 10 million savings

Manufacturing intelligence & manufacturing execution (MES) Impact on improvement of material consumption

Current Situation

180 million kg /year of plastics injected on 775 machines

Use cases

- Real Time Process & context information
- Variability, scrap, & consumption under Control
- Use big data analytics to predict a better process parameter

PROCESS OPTIMIZATION

- MI manages parameters based on weight feedback for low range of specification
- MES uploads this parameter set in injection molding machine for optimization

Impact on material consumption

- 8% improvement in raw material consumption
- 14 million kg of material saved/year
- € 40 million savings in material improvement

Predictive Maintenance

Current Situation

€ 120 million spare parts /year

2 million kg of spare parts in stock

Use cases

- Prevention of equipment breakdown
- Eliminate spare parts inventory: breakdown prediction allows just needed intervention
- Vendors get real time access to consumables inventory for just in time replenishment

Impact on material consumption

- **20% of spare parts in stock**
 - 400,000 kg of material saved
 - € 20 million saved
- **5** % breakdown reduction
- € 25 million of savings

Real time tracking and logistic network optimization

Use cases

- Reduced buffer stocks
- Accelerated material flow
- Reduced container losses
- Reduced transit inventory
- Optimized consolidation hub

Impact on material consumption

- 15% inventory reduction
 - 45 million kg of inventory saved
 - € 100 million

5 % transport cost saving

- € 30 million savings
- Decreased fuel consumption

Faurecia launched ambitious program to reduce material consumption

Enhancing use of digital validation and digital process simulation Leveraging manufacturing intelligence and predictive maintenance Developing real time tracking and optimizing logistic flows

> 64 million tons of material to be saved € 265 million cash improvement

Technical perfection, automotive passion

